Grothendieck Topologies and Ideal Closure Operations
نویسنده
چکیده
We relate closure operations for ideals and for submodules to non-flat Grothendieck topologies. We show how a Grothendieck topology on an affine scheme induces a closure operation in a natural way, and how to construct for a given closure operation fulfilling certain properties a Grothendieck topology which induces this operation. In this way we relate the radical to the surjective topology and the constructible topology, the integral closure to the submersive topology, to the proper topology and to Voevodsky’s h-topology, the Frobenius closure to the Frobenius topology and the plus closure to the finite topology. The topologies which are induced by a Zariski filter yield the closure operations which are studied under the name of hereditary torsion theories. The Grothendieck topologies enrich the corresponding closure operation by providing cohomology theories, rings of global sections, concepts of exactness and of stalks. Mathematical Subject Classification (2000): primary: 18F10; secondary: 13A10; 13A15; 13A35; 13B02; 13B22; 13C99; 13D30; 14A15; 14F05; 14F20; 18A99; 18B25; 18E15; 18F10; 54B40
منابع مشابه
Topics on the Ratliff-Rush Closure of an Ideal
Introduction Let be a Noetherian ring with unity and be a regular ideal of , that is, contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. The Ratliff-Rush closure of is defined by . A regular ideal for which is called Ratliff-Rush ideal. The present paper, reviews some of the known prop...
متن کاملClosure Operators in Exact Completions
In analogy with the relation between closure operators in presheaf toposes and Grothendieck topologies, we identify the structure in a category with finite limits that corresponds to universal closure operators in its regular and exact completions. The study of separated objects in exact completions will then allow us to give conceptual proofs of local cartesian closure of different categories ...
متن کاملCategories of lattice-valued closure (interior) operators and Alexandroff L-fuzzy topologies
Galois connection in category theory play an important role inestablish the relationships between different spatial structures. Inthis paper, we prove that there exist many interesting Galoisconnections between the category of Alexandroff $L$-fuzzytopological spaces, the category of reflexive $L$-fuzzyapproximation spaces and the category of Alexandroff $L$-fuzzyinterior (closure) spaces. This ...
متن کاملRegular closure operators
In an 〈E,M 〉-category X for sinks, we identify necessary conditions for Galois connections from the power collection of the class of (composable pairs) of morphisms in M to factor through the “lattice” of all closure operators on M , and to factor through certain sublattices. This leads to the notion of regular closure operator. As one byproduct of these results we not only arrive (in a novel w...
متن کاملSome (Fuzzy) Topologies on General\ Fuzzy Automata
In this paper, by presenting some notions and theorems, we obtaindifferent types of fuzzy topologies. In fact, we obtain someLowen-type and Chang-type fuzzy topologies on general fuzzyautomata. To this end, first we define a Kuratowski fuzzy interioroperator which induces a Lowen-type fuzzy topology on the set ofstates of a max- min general fuzzy automaton. Also by provingsome theorems, ...
متن کامل